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Abstract. Using a time domain method, the Kramers-Kronig integrals are derived without 
recourse to complex analysis (except in evaluating the Fourier transform of sgn ( t ) )  From 
the time domain result, a Fourier series method for numerical evaluation of causality 
relations is derived. This method eliminates the need to use numerical integration, the use 
of logarithms in evaluating the function and the consideration of Cauchy principal parts. 
Through the use of the fast Fourier transform algorithm the calculation can be very rapid. 
The accuracy of the technique is considered. 

1. Introduction 

The Kramers-Kronig relations give the connection between the real and imaginary 
parts of the frequency dependent response function of a causal physical system. Since 
the relations are normally expressed as integrals, the practical calculation of one part 
from the other (eg derived from experimental data) requires the use of numerical 
integration. By considering the even and odd parts of the corresponding temporal 
response function, relations can be found which connect the Fourier coefficients of the 
real and imaginary parts of the frequency function. 

2. Relation between time functions 

In optical studies a response function often used is the complex dielectric function 
e(@)- 1. Although the following derivation will be written in terms of f(o)- 1, the 
analysis applies to all causal response functions which are finite for all time. The 
temporal function f ( t )  is found from the corresponding frequency function F(o) by 
applying the inverse Fourier transform : 

f(l) = 9- ' (F(w))  = F(w) exp( - iwt) dw. 
211 

The temporal function corresponding to 40) - 1 is therefore c(t) - &t). 

respectively, 
Letting p(r) and q(t)  be the even and odd contributions to the real function c(t)- h( t )  

(2) dt) - 4 t )  = At) + 

490 
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Since the dielectric function is causal, 

f(t)-d(t) = 0, t < 0. (3) 

By considering positive and negative t separately, equations (2) and (3) yield 

dt) = sgn(t)q(t), t # 0. (4) 

I t  remains to connect p and q for t = 0. Since q(t)  is odd, q(0) = 0. In order to 
determine do), assume that (4) does not apply at t = 0, ie 

dt) = sgn(t)q(t) + z(t)7 (all 0, (5) 

where z ( t )  = 0 for t # 0, in order that (4) be true for t # 0. If z(0) were finite, the Fourier 
transform P(w) of p ( t )  would be no different from that for z(0) = 0. Thus, the only forms 
for z ( t )  which affect P(w) are s(t) or a derivative of d(t). However, the derivation of the 
Kramers-Kronig integral requires that p ( t )  be finite for all values of t (Landau and 
Lifshitz 1960) or that f(w)- 1 be square integrable (Toll 1956). Both these conditions 
preclude z ( t )  from being a delta function or one of its derivatives. Therefore (5) can only 
be true if z(t)  = 0, ie 

p(0) = 0. 

Thus for causal functions which are finite for all f ,  

At) = sgn(t)q(t), (all t ) .  (6) 

However, since (c( t ) -h( t ) ) ,  At) and -iq(t) are the inverse Fourier transforms of 
4w)- 1 (= c,(w)- 1 + ic2(w)), cl(w)- 1 and c2(w) respectively, equation (6) can be used 
to relate cl(w)- 1 to c2(w). The Fourier transform of sgn(t) can be written: 

where P represents the Cauchy principal part of the integral. In cases where it is necessary 
to take the principal part of the transform integral, the familiar convolution theorem 
incorporates the principal part in the following way. For 

h(t)  = f ( t ) g ( t )  

then 

H(w) = 'P J F ( o  - o')G(w') dw', 2n - m  

where 

h(t)  = F - ' ( H ( w ) )  

f ( t )  = 9- "4) 
At) = PF- yaw) ) .  

By applying (8) to (6) the familiar Kramers-Kronig relation is obtained : 

1 "  c2(w') E1(w)-l = -P - 
n i _ , w k 0  (9) 
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This derivation of the Kramers-Kronig integral is based on the usual initial assump- 
tions (which lead to analyticity of c(o )  (Toll 1956)). The complex analysis however, is 
only required in order to find (7). The remaining analysis uses standard Fourier theory. 

3. Use of Fourier series 

Equation (6) cannot be applied directly to experimental data since the temporal function 
is not know. The appropriate tool for practical application of (6) is the Fourier series. 
In order to use Fourier series, cl(o)- 1 and c2(o) must be band-limited (ie significantly 
nonzero only within the frequency range - w l  < o < wl). Under these conditions 
they can be represented within the range ( -  wl, wl) by the Fourier exponential series : 

m 

~ ~ ( 0 )  = 1 -iq,exp 
k = - m  

where the Fourier coefficients pk and qk are given by n / o l  times the inverse Fourier 
transforms p(t) and q(t) at time t = kn/w, . Thus equation (6) can be applied to the Fourier 
coefficients : 

Pk = sgn(k)qk. (11) 

The relationship given by (10) and (1 1) can also be written using Fourier sine-cosine 
series : 

m 

k =  1 

m 

k =  1 

By fmding values of Pk which satisfy (13) and then substituting these into (12), the 
function cl(w)- 1 may be found from E&). 

4. Errors in use of series causal relatiom 

Although relations (6), (lo), (ll),  (12) and (13) are exact, there are errors associated with 
applying the series to practical data. For gathering data such as c 2 ( 4  it is normal to 
sample the function at a finite number of discrete frequencies. If the function is sampled 
at (2N + 1) points w j ,  equally spaced in the range ( - ol, wl), there is no justification in 
using more than (2N + 1) Fourier coefficients to represent this data, ie 

N 

e2(wj) = c -iq;exp 
k =  - N  

j =  - N t o + N .  2jo 0. = - ’ 2N+1’ 
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The usual method (eg in the fast Fourier transform, Christiansen and Hockney 1971, 
Cooley and Tukey 1965) of determining the coefficients q; in (14) is to solve the (2N + 1 )  
equations. This yields 

However, had the function cz(w) been available in full the correct coefficients would 
have been given by : 

-lqk = - c,(w)exp [ -- -Ew) dw. 

Equation (15) can be viewed as evaluating the integral in (16) by means of the 
trapezium rule. 

Consequently the (2N + 1)  coefficients q; are not identical to the first (2N + 1) true 
coefficients of the full function c2(w). (This full function is of course not available.) In 
order to assess the error in this process, the sampled function values cZ(wj) obtained from 
the infinite series (10) are substituted into the expression (15) for the coefficients of the 
finite series, with the result : 

5 

4; = q k + m ( Z N + l ) r  k =  - N t o N .  
m = - c c  

Since equation (17) shows an infinite set of ‘true’ coefficients qkr and equation ( 1 1 )  
only applies to ‘true’ coefficients, it is not possible to obtain an exact expression for the 
relationship between the (4N+2) calculated coefficients p i ,  q; of the finite series. How- 
ever, it is possible to derive an expression for the error involved in applying (11) to 
calculated coefficients, ie in using 

P; = sgnwq;. (18) 

Let p; be the value of the kth coefficient of the finite series for cl(wj)- 1 .  The co- 
efficients p:  are ‘correct’ in the sense that their use in the finite series gives the exact 
values of cl(wj)- 1 .  

The error in the Fourier coefficients is 

e; = pl-p; 

where p ;  is the kth coefficient given by (18). 
By use of (17), (1  8) and (1 1 )  the error can be shown to be : 

00 

e; = - 2  c qk-m(ZN+l), k > O  

e; = 1 qk+m(ZN+l)? k < 0. 

m =  1 

00 

m =  1 

The error at w j  may be found by substituting (19) into the series: 

N 

k = - N  
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Since q(t)  is odd, qk is also odd. Using this fact, the error in the calculation of cl(wj) - 1 
is 

where C' means add the k = 0 term into the sum with half weight. Since qk + 0 as 
k -, CO the major contribution to the error will be the m = 1 term: 

N 

k = O  

Thus, as could be expected, the error depends on those Fourier coefficients, of the 
full function, which are not used in the analysis. This gives a criterion for the spacing of 
data points-the points should be close enough so that the Nth Fourier coefficient is 
small. For example, if a peak is covered by P points in the range where its amplitude 
exceeds h (assuming unit peak height), then the value of the Nth coefficient is approxi- 
mately 

f N  n(P-1) 
fo 
- =  exp-( 4Jln l / h  ) Gaussian peak 

f. = exp- [ ___ n'p2- ')( - h)  '"1 Lorentzian peak. 
f0 

For h = O.l,fN = O.Olfo, these give P = 5.1 and P = 9.8 respectively. 

5. Summary and discussion 

For a causal system the real and imaginary parts of the frequency dependent response 
function are related to each other by the Kramers-Kronig integrals. By beginning with 
the causal temporal response functions it is possible to derive a corresponding relation- 
ship between the even and odd parts of the time function. This relationship may be 
applied to Fourier series to provide a method of analysis which does not require the 
use of numerical integration. 

The features of this method are: 
(i) The calculation does not involve the Cauchy principal part since there are no 

infinities on the real time axis. 
(ii) The speed of calculation is high since the fast Fourier transform (Christiansen 

and Hockney 1971, Cooley and Tukey 1965) algorithm can be used to calculate Fourier 
coefficients. The speed is also enhanced because the logarithms required in other 
methods are not needed for this technique. 

(iii) Equation (6 )  allows the following insight into the use of the analysis on experi- 
mental data. In practice, limited instrument resolution results in the analysis being 
applied to a functionf(t)q(t) (ie c2(w) is convoluted with the instrument response function 
F(w), whose transform is f ( t ) ) .  When f ( t )q ( t )  is used instead of 4(t) in (6),  the result is 
f ( t )p( t ) .  Thus the resulting frequency function tl(w)- 1 is also convoluted with the same 
instrument response function F(w). 

(iv) Equation (20) provides a simple expression for the accuracy of the technique. 
Expressions like (21) and (22) may be used in conjunction with (20) to indicate the 
spacing of sampling points required to provide a given accuracy. 
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It is important to note that the Fourier series derivation requires the functions tl(o) 

and t&) to be band-limited. In general this can be satisfied since they both tend to 
zero as o + 00. However, the Kramers-Kronig integral, and hence the Fourier series 
technique, can be used to determine the canonical phase shift from the absolute value 
of the frequency response function (Toll 1956). This requires the use of 

ln(4w)- 1) = In(A(o) exp @(U)) = In A(o)+ @(U). 

Since do)- 1 + 0 as o -+ m, then In A(w) + -a, as o + co and so the real part of 
ln(dw)- 1) is not band-limited. In order to use the Fourier series method to calculate 
the phase shift, do) must be modified at high frequencies in some way without destroying 
causality. 
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